

Tetrahedron Letters 41 (2000) 7199-7202

TETRAHEDRON LETTERS

Synthesis and X-ray structure of new cationic allyl complexes of palladium(II) with α -diimine ligands

Ali Mechria,^a Mohamed Rzaigui^b and Faouzi Bouachir^{a,*}

^aLaboratoire de Chimie de Coordination, Faculté des Sciences de Monastir, 5000 Monastir, Tunisie ^bLaboratoire de Chimie des Materiaux, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisie

Received 10 March 2000; accepted 28 June 2000

Abstract

The α -diimine ligands Ar-N=C(R)C(R)=N-Ar react with Pd₂(dba)₃ **1** in the presence of methylallyloxyphosphonium hexafluorophosphate [CH₂=C(Me)CH₂⁻O-P(NMe₂)₃]⁺ PF₆⁻ **2** to give new cationic allyl complexes of palladium with α -diimine ligands **3a** and **3b**. The molecular structure for **3a** was determined by a single-crystal X-ray diffraction. © 2000 Published by Elsevier Science Ltd.

Keywords: palladium; cationic allyl complexes; α -diimine; methylallyloxyphosphonium salt.

An increased interest in the chemistry of 1,4-diazabutadiene (DAB) ligands, bis(arylimino)acenaphthene (Ar-BIAN) ligands and their complexes^{1–5} was stimulated by the recent discovery by Brookhart and co-workers of Ni(II) and Pd(II) α -olefin polymerization catalysts containing bulky α -diimine ligands.^{6–10} These catalysts show extremely high activities and allow access to high molar mass polymers whose structures vary from a highly branched, amorphous material to a linear, semicrystalline material.⁹

The 1,4-diazabutadiene ligands possess different possible mode of coordination as 2-, 4-, 6-, and even 8-electron donors in terminal, chelating, and bridging arrangement.^{11–14} The variation of the steric and electronic properties of 1,4-diazabutadiene ligands is possible by changing aromatic substituent on the imine N atom.

^{*} Corresponding author. Fax: 216 3 500 278 (A.M., F.B.); 216 2 434 566 (M.R.).

We report here the synthesis of new cationic allyl complexes of palladium with α -diimine ligands. Indeed, the oxidative addition of methylallyloxyphosphonium hexafluorophosphate¹⁵ **2** to the zerovalent compound Pd₂(dba)₃¹⁶ **1** in the presence of α -diimine ligands^{17,18} (**a**,**b**) led to an exclusive formation in high yields of cationic η^3 -allyl complexes of palladium with bidentate nitrogen ligands [(η^3 -C₄H₇)Pd(N^N)]⁺ PF₆⁻ (**3a**,**3b**) (Scheme 1).

HMPT: hexamethylphosphotriamide dba: dibenzylideneacetone

Scheme 1.

The new complexes exhibit spectroscopic data in accord with the proposed strutures. The ¹H NMR spectra of complexes **3a** and **3b** are characterized by the *syn* and *anti* allylic protons; thus, the two resonances are at 3.23 ppm (H_{anti}); 3.67 ppm (H_{syn}) for **3a** and at 3.23 ppm (H_{anti}); 3.49 ppm (H_{syn}) for **3b**. In ¹³C NMR spectroscopy, the allylic carbons C₁ and C₂ appear at 65.4 and 63.8 ppm for **3a** and **3b**, respectively. The C=N carbon appears at 162 ppm for **3a** and 172.7 ppm for **3b**. The IR spectra of **3a** and **3b** are also instructive, since the ν (C=N) stretching frequencies (1612; 1589 cm⁻¹) and (1654; 1625 cm⁻¹) for **3a** and **3b**, respectively, are typical of an α -diimine complex coordinated as an *s*-*cis* conformation.^{18,19} The ν (PF₆⁻) value is evident (839 cm⁻¹).

A single-crystal X-ray diffraction structure confirms the identity of complex **3a**. The ORTEP diagram of **3a** is shown in Fig. 1. The glyoxal-bis(4-methylphenyl)diimine ligand **a** was coordinated with an *s*-*cis* conformation as seen in Fig. 1 with Pd–N(*sp*²) bond lengths of 2.124 and 2.117 Å which are very close to those reported for other palladium–imino-nitrogen bonds.^{20,21} The complex **3a** is a distorted square-planar complex. This distortion is illustrated by the N(1)-Pd-N(2) bond angle of 77.7(7)°. The metal-chelate ring (Pd-N1-C5-C6-N2) in complex **3a** is almost flat²¹ as indicated by the torsion angles of -1.0(0.1), 6.0(0.1) and -4.0(0.1)° for N(1)-C(5)-C(6)-N(2), Pd-N(2)-C(6)-C(5), and Pd-N(1)-C(5)-C(6), respectively. The methyl on the allyl group is

Figure 1. ORTEP diagram of **3a**. Thermal ellipsoids are at 50% probability. PF_6^- anion is omitted for clarity. Selected bond lengths (Å) and angles (deg): Pd-N1=2.124(8), Pd-N2=2.117(0), Pd-C1=2.115(9), Pd-C2=2.146(7), Pd-C3=2.100(4), N1-C5=1.294(6), N1-C7=1.417(6), N2-C6=1.252(9), N2-C14=1.444(4), C1-C2=1.388(5), C2-C3=1.368(9), N1-Pd-N2=77.8(8), N1-Pd-C3=107.4(2), N2-Pd-C1=108.2(5), Pd-N1-C5=111.3(3), Pd-N2-C6=113.0(9)

slightly tilted out of the allyl plane by about 10° as indicated by the torsion angle of 169.5(0.3) for C(4)-C(2)-C(1)-C(3). The aryl plane makes an angle of $110.8(3)^{\circ}$ with the palladium coordinative plane which is normal for η^3 -2-methylallyl complexes of palladium.²¹ The aryl rings are tilted out of the N=C-C=N plane by about 40°, as indicated by torsion angles of 41.7(0.2), -139.1(0.8), -35.3(0.1), and 145.1(0.7)° for C(5)-N(1)-C(7)-C(8), C(5)-N(1)-C(7)-C(12), C(6)-N(2)-C(14)-C(15), C(6)-N(2)-C(14)-C(19), respectively. The PF₆⁻ is a regular octahedral anion.

In conclusion, the synthesis and characterization of new cationic allyl complexes of Pd with diimine ligands are described. The synthetic procedure for preparing **3a** and **3b**^{22–24} offers great versatility for the generation of other α -diimine allyl complexes of possible catalytic interest.

References

- 1. Klein, R. A.; Hartl, F.; Elsevier, C. J. Organometallics 1997, 16, 1284.
- 2. van Asselt, R.; Elsevier, C. J.; Amatore, C.; Jutand, A. Organometallics 1997, 16, 317.
- 3. van Asselt, R.; Vrieze, K.; Elsevier, C. J. J. Organomet. Chem. 1994, 480, 27.
- 4. Groen, J. H.; Delis, J. G. P.; van Leeuwen, W. N. M.; Vrieze, K. Organometallics 1997, 16, 68.
- 5. Groen, J. H.; Elsevier, C. J.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L. Organometallics 1996, 15, 3445.
- 6. Brookhart, M.; Hauptman, E.; Lincoln, D. J. Am. Chem. Soc. 1992, 114, 10394.
- 7. Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137.
- 8. Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 4746.
- 9. Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414.
- 10. Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 2436.
- 11. van der Poel, H.; van Koten, G.; Vrieze, K. Inorg. Chem. 1980, 19, 1145.
- 12. Fruhauf, H. W.; Landers, R.; Goddard, R.; Kruger, C. Angew. Chem. 1978, 90, 56.
- 13. Staal, L. H.; van Koten, G.; Vrieze, K.; Ploeger, F.; Stam, C. H. Inorg. Chem. 1982, 20, 1830.
- 14. van der Poel, H.; van Koten, G.; Vrieze, K.; Kokkes, M.; Stam, C. H. J. Organomet. Chem. 1979, 175, C21.
- 15. Neibecker, D. unpublished results.
- 16. Takahashi, Y.; Ito, T. S.; Sakai, S.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253.
- 17. tom Dieck, H.; Renk, I. W. Chem. Ber. 1971, 104, 92.
- 18. van Asselt, R.; Elsevier, C. J.; Smeets, J. J.; Spek, A. L.; Benedix, R. Recl. Trav. Chim. Pays-Bas 1994, 113, 88.
- 19. Svoboda, M.; tom Dieck, H. J. Organomet. Chem. 1980, 191, 321.

- 20. Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; AbdulMalik, K. M. J. Chem. Soc., Dalton Trans. 1979, 1899.
- 21. Crociani, B.; Bertani, R.; Bandoli, G. J. Chem. Soc., Dalton Trans. 1982, 1715.
- 22. Preparation of **3a**: To 20 ml of a CH₂Cl₂ solution of Pd₂(dba)₃ (113 mg, 0.12 mmol) was added 93.5 mg of salt **2** (0.24 mmol) and DAB **a** (58.3 mg, 0.24 mmol) at ambient temperature. After 24 h of stirring the mixture was filtered through a Celite filter and the residue was washed with CH₂Cl₂ (5 ml). The combined filtrates were evaporated to dryness and the product was washed with diethylether (3×10 ml) and dried in vacuo, yielding 120 mg of **3a** as an orange solid (90%). Decomposition: 230°C. IR [ν cm⁻¹] (KBr): 839 (PF₆⁻), 1598, 1612 (C=N). ¹H NMR (300 MHz, CD₂Cl₂): δ 1.98 (s, 3H, H₄), 2.26 (s, 6H, H₁₂), 3.23 (s, 2H, H¹_{anti}, H³_{anti}), 3.67 (s, 2H, H¹_{syn}, H³_{syn}), 7.18 (s, 8H, H_{arom}), 8.31 (s, 2H, H₅). ¹³C NMR (75.47 MHz, CD₂Cl₂): δ 21.3 (C₁₂), 23.5 (C₄), 65.4 (C_{1,3}), 122.7 (C_{7,11}), 130.7 (C_{8,10}), 136.8 (C₉), 142.1 (C₂), 146.9 (C₆), 162.4 (C₅).
- Preparation of **3b**: The complex **3b** was obtained in 85% yield by the same procedure as a yellow-orange solid. Decomposition: 253°C. IR [ν cm⁻¹] (KBr): 839 (PF₆⁻), 1625, 1654 (C=N). ¹H NMR (300 MHz, CDCl₃): δ 1.06 (d, J_{HH} = 6.66 Hz, 12H, CH₃-*i*Pr), 1.44 (d, J_{HH} = 6.93 Hz, 12H, CH₃-*i*Pr), 2.16 (s, 3H, H₄), 3.16 (sept, J_{HH} = 6.66 Hzx, 2H, CH-*i*Pr), 3.23 (s, 2H, H¹_{anti}, H³_{anti}), 3.35 (sept, J_{HH} = 6.93 Hz, 2H, CH-*i*Pr), 3.49 (s, 2H, H¹_{syn}, H³_{syn}), 6.75 (d, J_{HH} = 7.20 Hz, 2H, H₇), 7.46 (m, 4H, H_{14,16}), 7.53 (m, 2H, H₁₅), 7.63 (m, 2H, H₈), 8.33 (d, J = 8.19 Hz, 2H, H₉). ¹³C NMR (75.47 MHz): δ 22.9, 23.3 (CH₃-*i*Pr), 23.5 (C₄), 29.1, 29.4 (CH-*i*Pr), 63.8 (C_{1,3}), 124.5 (C₇), 124.7, 124.8 (C_{14,16}), 125.6 (C₁₅), 128.9 (C₈), 129.3 (C₆), 131.5 (C₉), 133.7 (C₁₀), 137.3, 137.4 (C_{13,17}), 137.7 (C₁₁), 143.4 (C₂), 146.2 (C₁₂), 172.7 (C₅).
- 24. Crystallographic data for **3a**: $C_{20}H_{23}N_2PF_6Pd$, fw=550.8, monoclinic, $P2_1/c$ (No. 14), Z=4, a=8.842(3) Å, b=15.157(2) Å, c=16.989(3) Å, $\beta=104.80(7)^\circ$, V=2201.4(0) Å³; $D_{calc}=1.662$ g cm⁻³; R=0.059; $R_w=0.063$, $-10 \le h \le 10$; $0 \le k \le 18$; $0 \le l \le 20$; Mo ($\lambda = 0.7107$ Å), T=296 K. Atomic coordinates and anisotropic temperature factors have been deposited at the Cambridge Crystallographic Data Centre, University Chemical Laboratory, 12 Union Road, Cambridge CB2 1EZ, UK (CCDC 141682).